Divergent dynamics and the Kauzmann temperature in glass forming systems

نویسندگان

  • Julio Cesar Martinez-Garcia
  • Sylwester J. Rzoska
  • Aleksandra Drzozd-Rzoska
  • Jorge Martinez-Garcia
  • John C. Mauro
چکیده

In the last decade the challenging analysis of previtreous behavior of relaxation time (τ(T)) in ultraviscous low molecular weight liquids led to the conceptual shift of the glass transition physics toward theories not predicting a "finite-temperature" divergence. This "breakthrough" experimental finding was strengthened by the discovery that "dynamic" (i.e. from τ(T) fitting) and "thermodynamic" estimations of the "ideal glass" (Kauzmann) temperature do not match, what in fact questioned its existence. In this report, due to the novel way of analysis based on the transformation of τ(T) experimental data to the activation energy temperature index form, the clear prevalence of the "finite-temperature" divergence is proved. The obtained "dynamic" singular temperatures clearly coincide with "thermodynamic" estimations of the Kauzmann temperature, thus solving also the second mystery. The comprehensive picture was obtained due to the analysis of 55 experimental data-sets, ranging from low molecular weight liquids and polymers to liquid crystal and plastic crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Configurational entropy of polar glass formers and the effect of electric field on glass transition.

A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidan...

متن کامل

Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy

Differential scanning calorimetry (DSC) was used to determine the thermodynamic functions of the undercooled liquid and the amorphous phase with respect to the crystalline state of the ~41.2Ti13.8CU125Nilo.OBe22.5 bulk mltallic glass forming alloy. The specific heat capacities of this alloy. in the undercooled liquid, the amorphous state and the crystal were determined. The differences in entha...

متن کامل

Ergodicity and slowing down in glass-forming systems with soft potentials: no finite-temperature singularities.

The aim of this paper is to discuss some basic notions regarding generic glass-forming systems composed of particles interacting via soft potentials. Excluding explicitly hard-core interaction, we discuss the so-called glass transition in which a supercooled amorphous state is formed, accompanied by a spectacular slowing down of relaxation to equilibrium, when the temperature is changed over a ...

متن کامل

Crystal nucleation in a supercooled liquid with glassy dynamics.

In simulations of supercooled, high-density liquid silica we study a range of temperature T in which we find both crystal nucleation as well as the characteristic dynamics of a glass forming liquid, including a breakdown of the Stokes-Einstein relation. We find that the liquid cannot be observed below a homogeneous nucleation limit (HNL) at which the liquid crystallizes faster than it can equil...

متن کامل

Viscosity of glass-forming liquids.

The low-temperature dynamics of ultraviscous liquids hold the key to understanding the nature of glass transition and relaxation phenomena, including the potential existence of an ideal thermodynamic glass transition. Unfortunately, existing viscosity models, such as the Vogel-Fulcher-Tammann (VFT) and Avramov-Milchev (AM) equations, exhibit systematic error when extrapolating to low temperatur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014